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Multiple solutions for eigenvalue problems
involving an indefinite potential and with

(p1(x), p2(x)) balanced growth

Vasile-Florin Uţă

Abstract

In this paper we are concerned with the study of the spectrum for a
class of eigenvalue problems driven by two non-homogeneous differential
operators with different variable growth and an indefinite potential in
the following form

−div
[
H(x, |∇u|)∇u + I(x, |∇u|)∇u

]
+ V (x)|u|m(x)−2u =

= λ
(
|u|q1(x)−2 + |u|q2(x)−2

)
u in Ω,

which is subjected to Dirichlet boundary condition. The proofs rely
on variational arguments and they consist in finding two Rayleigh-type
quotients, which lead us to an unbounded continuous spectrum on one
side, and the nonexistence of the eigenvalues on the other.

1 Introduction

The study of variational problems with nonstandard growth conditions has
been developed extensively over the last years. The p(x)-growth conditions can
be regarded as a key factor in the modeling of some fluids which have differ-
ent inhomogeneities, for instance the electrorheological fluids. This leaded to
the necessity of studying the variable exponent Lebesgue and Sobolev spaces,
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Lp(x) and W 1,p(x), where p is a real valued function. The variable exponent
Lebesgue and Sobolev spaces also play an important role in the study of the
thermorheological fluids, the development of the robotics, aircraft and airspace
and the image restoration.

We are interested in the study of a class of stationary problems, which
are characterized by the fact that the associated energy density changes its
ellipticity and growth properties according to the point.

This new type of non-homogeneous differential operators has been intro-
duced by I. H. Kim and Y.H. Kim in [12], and it helps us to understand the
nonlinear problems with possible lack of uniform convexity.

In this paper we extend the results obtained by M. Mihăilescu and V.
Rădulescu in [15] in the framework of the new operators introduced by I.
H. Kim and Y. H. Kim. We study the presence of two operators with vari-
able growth and the influence of an indefinite sign-changing potential on their
spectral properties.

We consider the following nonlinear eigenvalue problem:

(P )


−div

[
H(x, |∇u|)∇u+ I(x, |∇u|)∇u

]
+ V (x)|u|m(x)−2u =

= λ
(
|u|q1(x)−2 + |u|q2(x)−2

)
u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with Lipschitz boundary, V (x) is an
indefinite sign-changing potential and λ ∈ R is a real parameter. We note
that similar results were obtained by S. Baraket, S. Chebbi, N. Chorfi and V.
Rădulescu in [2], under the basic assumption that V ≡ 0 and the right-hand
side of the problem has only a q(x)-growth rate.

The study of the (p1(x), p2(x))-growth rate problems was motivated by
the fact that we may need to model a composite that changes its hardening
exponent according to the point. This kind of problems was also studied by
P. Marcellini [13, 14].

This type of problems was also studied by G. Mingione et al. [3, 6, 7]
in the framework of two different materials with power hardening exponents
p1(x) respectively p2(x), and a coefficient a(x) which dictates the geometry of
a composite of the two materials as it follows:

u 7→
∫

Ω

[
|∇u|p1(x) + a(x)|∇u|p2(x) log(e+ |x|)

]
dx.

In our research we obtain three important results which are: the reveal-
ing of the infimum eigenvalue associated to our problem, the nonexistence of
the eigenvalues for quantities smaller than one Rayleigh-type quotient and a
final result which points out the concentration of the spectrum associated to
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the non-homogeneous operator. For more details about spectral properties of
differential operators we may refer to [12, 16] and to Chapter 3 of [19].

More contributions to the study of the eigenvalue nonlinear elliptic equa-
tions in an anisotropic framework were also added by K. Ben Ali, A. Ghanmi,
K. Kefi [1], M. Cavalcanti, V. Domingos Cavalcanti, I. Lasiecka, C. Webler [4],
M. Cencelj, D. Repovš, Z. Virk [5], Y. Fu, Y. Shan [10], K. Kefi, V. Rădulescu
[11], D. Repovš [20] and I. Stăncuţ, I. St̂ırcu [21].

2 The functional framework

With the emergence of nonlinear problems in applied sciences, standard
Lebesgue and Sobolev spaces demonstrated their limitations in the applica-
tions. The class of nonlinear problems with variable exponent growth reflects
a new kind of physical phenomena.

In order to deal with the problem (P ) we need some theory about the
generalized Lebesgue-Sobolev spaces. In what follows we will give a simple
description and we will recall their main properties. These results are described
in the following books: J. Musielak [17], L. Diening, P. Hästö, P. Harjulehto,
M. Ružička [8], V. Rădulescu and D. Repovš [19]. We also refer to the survey
paper by V. Rădulescu [18].

Let Ω be a bounded domain in RN .
For a measurable function p : Ω→ R we define:

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

Set:
C+(Ω) =

{
p ∈ C(Ω) : p(x) > 1, for all x ∈ Ω

}
.

The variable exponent Lebesgue space Lp(x)(Ω) is defined

Lp(x)(Ω) =

{
u; u : Ω→ R a measurable function :

∫
Ω

|u|p(x)dx <∞
}
,

and with the norm:

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

Lp(x)(Ω) becomes a Banach space whose dual is the space Lp
′(x)(Ω), where

1
p(x) + 1

p′(x) = 1.

Remark 2.1. If 1 < p(x) < ∞, Lp(x)(Ω) is reflexive Banach space. Moreover,
if p is measurable and bounded, then Lp(x)(Ω) is also separable.
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Remark 2.2. If 0 < |Ω| < ∞ and h(x), r(x) with h(x) < r(x) almost every-
where in Ω, are two variable exponents then the following continuous embed-
ding holds

Lr(x)(Ω) ↪→ Lh(x)(Ω).

Let Lp
′(x)(Ω) denotes the dual space of Lp(x)(Ω). For all u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω) the following Hölder type inequality holds:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (1)

A key role in the studies which imply the variable exponent Lebesgue spaces
is played by the modular of Lp(x)(Ω), which is ρp(x) : Lp(x)(Ω) → R and is
defined by

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx.

Remark 2.3. If p(x) 6≡ constant in Ω, for u, (un) ∈ Lp(x)(Ω), the following
relations hold true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (3)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (4)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (5)

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
.

On W 1,p(x)(Ω) we may consider the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ :

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

We define W
1,p(x)
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm

‖ · ‖p(x) or

W
1,p(x)
0 (Ω) =

{
u;u|∂Ω = 0, u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
.
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Taking account of [12] for p ∈ C+(Ω) we have the p(·)-Poincaré type in-
equality

|u|p(x) ≤ C|∇u|p(x), (6)

where C > 0 is a constant which depends on p and Ω.
For Ω ⊂ RN a bounded domain and p a global log-Hölder continuous

function, on W
1,p(x)
0 (Ω) we can work with the norm |∇u|p(x) equivalent with

‖u‖p(x).

Remark 2.4. If p, q : Ω → (1,∞) are Lipschitz continuous, p+ < N and

p(x) ≤ q(x) ≤ p∗(x), for any x ∈ Ω, where p∗(x) = Np(x)
N−p(x) , the embedding

W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact and continuous.

Remark 2.5. If 0 < |Ω| < ∞, and p2(x) < p1(x) in Ω, then there holds the
following continuous embedding

W
1,p1(x)
0 (Ω) ↪→W

1,p2(x)
0 (Ω).

3 Basic hypotheses

We will study the problem

(P )


−div

[
H(x, |∇u|)∇u+ I(x, |∇u|)∇u

]
+ V (x)|u|m(x)−2u =

= λ
(
|u|q1(x)−2 + |u|q2(x)−2

)
u in Ω,

u = 0 on ∂Ω,

In order to state more precisely our results we have that:
(HI1) H, I : Ω× [0,∞)→ [0,∞) satisfy the following assumptions:
→ H(·, t) and I(·, t) are measurable on Ω for all t ≥ 0;
→ H(x, ·) and I(x, ·) are locally absolutely continuous on [0,∞) for almost all
x ∈ Ω.
(HI2) There exist α1 ∈ Lp

′
1(x)(Ω) and α2 ∈ Lp

′
2(x)(Ω) and some positive

constants β1, β2 > 0 such that:
→ |H(x, |v|)v| ≤ α1(x) + β1|v|p1(x)−1;
→ |I(x, |v|)v| ≤ α2(x) + β2|v|p2(x)−1;
for almost all x ∈ Ω and for all v ∈ RN .
(HI3) There is a positive constant c such that the following hypotheses hold
for almost all x ∈ Ω:

→ H(x, t) ≥ ctp1(x)−2, t
∂H

∂t
(x, t) + H(x, t) ≥ ctp1(x)−2;
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→ I(x, t) ≥ ctp2(x)−2, t
∂I

∂t
(x, t) + I(x, t) ≥ ctp2(x)−2;

for all t > 0.
Let us now impose some conditions over our variable exponents. Suppose

that we have p1, p2, q1, q2, m : Ω→ (1,∞), p1, p2, q1, q2,m ∈ C+(Ω),

p+
2 < q−2 ≤ q2(x) ≤ q+

2 ≤ m− ≤ m(x) ≤ m+ ≤ q−1 ≤ q1(x) ≤ q+
1 <

< p−1 ≤ p1(x) ≤ p+
1

(7)

and

q+
1 < p∗2(x) :=

{
Np2(x)
N−p2(x) , if p2(x) < N ;

+∞, if p2(x) ≥ N.
(8)

The function V : Ω → R is an indefinite sign-changing potential and it
satisfies:
(V ) V ∈ Lr(x)(Ω) with r ∈ C+(Ω) and r(x) > N

m− , for all x ∈ Ω.

We remark that for the more strictly case when H(x, t) = tp1(x)−2 and
I(x, t) = tp2(x)−2 our differential operators become the p(x)-Laplace operator
(∆p(x)(u) := div(|∇u|p(x)−2∇u)). We may also observe that if H(x, t) and

I(x, t) are of type H(x, t) = (1 + |t|2)
p(x)−2

2 and I(x, t) = (1 + |t|2)
p(x)−2

2 , our
operators become the generalized mean curvature operator:

div
[
(1 + |∇u|2)

p(x)−2
2 ∇u

]
,

which drive us to the capillary surface operator

div

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

]
.

These types of general differential operators are also studied by D. Repovš
in [20].

Our hypotheses (7) and (8) dictates the fact that we should search our

weak solutions in the space W
1,p1(x)
0 (Ω).

Definition 3.1. We say that u ∈ W 1,p1(x)
0 (Ω) \ {0} is a weak solution of the

problem (P ) if∫
Ω

H(x, |∇u|)∇u∇ϕ+ I(x, |∇u|)∇u∇ϕdx+

∫
Ω

V (x)|u|m(x)−2uϕdx =

= λ

∫
Ω

|u|q1(x)−2uϕ+ |u|q2(x)−2uϕdx,

for all ϕ ∈W 1,p1(x)
0 (Ω).
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For now on we set W := W
1,p1(x)
0 (Ω) and ‖ · ‖ := ‖ · ‖p1(x).

We note that if λ is an eigenvalue of (P ), then the corresponding eigen-
function u ∈W \ {0} is a weak solution for the problem (P ).

Using the hypotheses (HI1)− (HI3) we define:

E0(x, t) :=

∫ t

0

H(x, ξ) · ξdξ +

∫ t

0

I(x, ξ) · ξdξ.

A key role in finding our weak solution is played by the following assump-
tion:
(HI4) 0 ≤ H(x, |t|)|t|2 + I(x, |t|)|t|2 ≤ p+

1 E0(x, |t|),
holds for all x ∈ Ω and for all t ∈ RN .

4 On the infimum eigenvalue

Now, for each potential V ∈ Lr(x)(Ω) we consider the following Rayleigh-type
quotients:

λ1(V ) := inf
u∈W\{0}

∫
Ω

E0(x, |∇u|)dx+

∫
Ω

V (x)

m(x)
|u|m(x)dx∫

Ω

1

q1(x)
|u|q1(x)dx+

∫
Ω

1

q2(x)
|u|q2(x)dx

and

λ0(V ) := inf
u∈W\{0}

∫
Ω

[H(x, |∇u|) + I(x, |∇u|)] |∇u|2dx+

∫
Ω

V (x)|u|m(x)dx∫
Ω

|u|q1(x)dx+

∫
Ω

|u|q2(x)dx

.

Due to the quantities λ1(V ) and λ0(V ) we define the following functionals
E,EV ,F : W → R, by:

E(u) :=

∫
Ω

E0(x, |∇u|)dx,

EV (u) := E(u) +

∫
Ω

V (x)

m(x)
|u|m(x)dx,

F(u) :=

∫
Ω

1

q1(x)
|u|q1(x)dx+

∫
Ω

1

q2(x)
|u|q2(x)dx.

Using Lemma 3.2 from [12] and arguments from Chapter 3 of [19], we have
that EV (u) and F(u) ∈ C1(W,R) and for all x ∈ RN and v ∈W we have:

〈E′V (u), v〉 =

∫
Ω

[H(x, |∇u|) + I(x, |∇u|)]∇u∇vdx+

∫
Ω

V (x)|u|m(x)−2uvdx
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and

〈F′(u), v〉 =

∫
Ω

(
|u|q1(x)−2 + |u|q2(x)−2

)
uvdx.

We proceed now to reveal our first result.

Theorem 4.1. The quantity λ1(V ) is an eigenvalue of problem (P ) and the
corresponding eigenfunction u is a weak solution for our problem.

Before we proceed to show our result, we will firstly prove some important
properties.

Proposition 4.2. Assuming that conditions (7), (8) and (V ) hold, then for
every constant ε > 0, we may find a constant Cε > 0 such that:∣∣∣∣∫

Ω

V (x)

m(x)
|u|m(x)dx

∣∣∣∣ ≤ ε∫
Ω

(
|∇u|m

−
+ |∇u|m

+
)
dx

+ Cε|V |r(x)

∫
Ω

(
|u|m

−
+ |u|m

+
)
dx,

for all u ∈W .

Proof. Since r(x) ≥ r− on Ω we have that Lr(x)(Ω) ⊂ Lr
−

(Ω). Using as-
sumption (V ) we also have that r(x) > N

m− , for all x ∈ Ω and it follows that

r− > N
m− and V ∈ Lr−(Ω).

We fix ε > 0. We search a constant CV,ε such that for all u ∈ W 1,m−

0 (Ω)
we have that∫

Ω

|V (x)| · |u|m
−
dx ≤ ε

∫
Ω

|∇u|m
−
dx+ CV,ε|V |r−

∫
Ω

|u|m
−
dx. (9)

Firstly we aim to reveal that for each z ∈ (1,m−
∗
), where m−

∗
:= Nm−

N−m− ,
we may find a constant C ′V,ε > 0 such that:

|ξ|z < ε | |∇ξ| |m− + C ′V,ε|ξ|m− , ∀ ξ ∈W
1,m−

0 (Ω). (10)

Arguing by contradiction we suppose that (10) does not hold for every
ε > 0.

Then we may find a sequence (ξn) ⊂ W 1,m−

0 (Ω) with |ξn|z = 1 and a
strictly positive constant ε0 such that

ε0 | |∇ξn| |m− + n|ξn|m− < 1, ∀ n.

It is trivial to say that (ξn) is bounded in W 1,m−

0 (Ω) and |ξn|m− → 0. Let

ξ ∈W 1,m−

0 (Ω) be the weak limit of ξn (passing eventually to a subsequence).
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We can actually note that ξ = 0. Since z ∈ (1,m−
∗
) we have the following

compact embedding

W 1,m−

0 (Ω) ↪→ Lz(Ω)

which implies
ξn → 0 in Lz(Ω).

But |ξn|z = 1 which yields that |ξ|z = 1, fact that is leading us to a contra-
diction. Thus we have proved that relation (10) holds.

Since r− > N
m− , a straightforward computation show us that m− · r−′ <

m−
∗
, where r−

′
is the conjugate exponent of r−, i.e., 1

r− + 1
r−′

= 1.
Using the Hölder inequality we obtain∫

Ω

|V (x)| · |u|m
−
dx ≤ |V |r− · |u|m

−

m−·r−′ , ∀ u ∈W
1,m−

0 (Ω). (11)

Using inequalities (10) and (11) we obtain that inequality (9) holds.
Analogous we have that r− > N

m+ , which implies that there exists a con-

stant C ′′V,ε such that for all u ∈W 1,m+

0 (Ω), the following relation:∫
Ω

|V (x)| · |u|m
+

dx ≤ ε
∫

Ω

|∇u|m
+

dx+ C ′′V,ε|V |r−
∫

Ω

|u|m
+

dx (12)

holds.
Taking account of the relation (7), m− ≤ m+ < p1(x) for any x ∈ Ω we

have that W ⊂ W 1,m±

0 (Ω), therefore one can say that (9) and (12) hold for
each u ∈W .

Since the embedding Lr(x)(Ω) ↪→ Lr
−

(Ω) is continuous we can have∫
Ω

|V (x)| · |u|m
−
dx ≤ ε

∫
Ω

|∇u|m
−
dx+ CV,ε|V (x)|r(x)

∫
Ω

|u|m
−
dx

and ∫
Ω

|V (x)| · |u|m
+

dx ≤ ε
∫

Ω

|∇u|m
+

dx+ C ′′V,ε|V (x)|r(x)

∫
Ω

|u|m
+

dx.

Taking into account that p2(x) < m− ≤ m(x) ≤ m+ < p1(x) for every
x ∈ Ω we point out that for all u ∈W we have:∣∣∣∣∫

Ω

V (x)

m(x)
|u|m(x)dx

∣∣∣∣ ≤ 1

m−

∫
Ω

|V (x)| · (|u|m
−

+ |u|m
+

)dx.

Combining the last three inequalities from above we can conclude our
proposition.

�
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Proposition 4.3. Suppose that (7) and (HI1)− (HI4) hold. Then one have:∫
Ω

(
|∇u|m

−
+ |∇u|m

+
)
dx ≤ 2p+

1

c

∫
Ω

E0(x, |∇u|)dx.

Proof. Using (HI4) we obtain that:∫
Ω

E0(x, |∇u|)dx ≥ 1

p+
1

∫
Ω

[H(x, |∇u|) + I(x, |∇u|)] · |∇u|2dx.

Furthermore using (HI3) we have∫
Ω

E0(x, |∇u|)dx ≥ c

p+
1

∫
Ω

|∇u|p1(x) + |∇u|p2(x)dx.

Now taking use of relation (7) and the previous inequality we obtain that:∫
Ω

(
|∇u|m

−
+ |∇u|m

+
)
dx ≤ 2

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx,

hence ∫
Ω

(
|∇u|m

−
+ |∇u|m

+
)
≤ 2p+

1

c

∫
Ω

E0(x, |∇u|)dx

which concludes our proof.
�

Using the results obtained by Propositions 4.2 and 4.3 we can say that for
every positive constant ε, there exists a positive constant Cε such that:∣∣∣∣∫

Ω

V (x)

m(x)
|u|m(x)dx

∣∣∣∣ ≤ ε∫
Ω

E0(x, |∇u|)dx+ Cε|V |r(x)

∫
Ω

(
|u|m

−
+ |u|m

+
)
dx

(13)
for all u ∈W .

The following lemma plays a crucial role in obtaining our further results.

Lemma 4.4. The following relations hold:

lim
‖u‖→∞

EV (u)

F(u)
=∞ (14)

and

lim
‖u‖→0

EV (u)

F(u)
=∞ (15)
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Proof. Using (7) we can reveal that

q1(x) ≤ m− ≤ m+ ≤ q2(x), ∀ x ∈ Ω.

Therefore we can say that

|u(x)|m
−

+ |u(x)|m
+

≤ 2
(
|u(x)|q1(x) + |u(x)|q2(x)

)
, ∀ x ∈ Ω, ∀ u ∈W.

Integrating the inequality over Ω we obtain that∫
Ω

(
|u|m

−
+ |u|m

+
)
dx∫

Ω

(
|u|q1(x) + |u|q2(x)

)
dx

≤ 2 (16)

for all u ∈W .
Let evaluate now the quantity:

EV (u)

F(u)
=

E(u) +

∫
Ω

V (x)

m(x)
|u|m(x)dx∫

Ω

1

q1(x)
|u|q1(x)dx+

∫
Ω

1

q2(x)
|u|q2(x)dx

.

Using the relation (13) for any ε ∈ (0, 1) and taking account of (HI3) and
(HI4) we obtain

EV (u)

F(u)
≥

(1− ε)c
p+

1

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx

1

q−2

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx

−

−
Cε|V (x)|r(x)

∫
Ω

(
|u|m

−
+ |u|m

+
)
dx

1

q−2

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx

.

Using relations (7) and (16) we have that

EV (u)

F(u)
≥

(1− ε)c
p+

1

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx

1

q−2

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx

− C̃1|V (x)|r(x)

≥

(1− ε)c
p+

1

∫
Ω

|∇u|p1(x)dx

1

q−2

(
|u|q

−
1

q−1
+ |u|q

+
1

q+1
+ |u|q

−
2

q−2
+ |u|q

+
2

q+2

) − C̃1|V (x)|r(x),
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where C̃1 is a positive constant.

By relation (7), we have the continuous embeddings W ↪→ Lq
±
1 (Ω) and

W ↪→ Lq
±
2 (Ω), so we can find a positive constant C̃2 such that

EV (u)

F(u)
≥

(1− ε)c
p+

1

∫
Ω

|∇u|p1(x)dx

C̃2

(
‖u‖q

−
1 + ‖u‖q

+
1 + ‖u‖q

−
2 + ‖u‖q

+
2

) − C̃1|V (x)|r(x).

Since ‖u‖ > 1 in W we have that

EV (u)

F(u)
≥

(1− ε)c
p+

1

‖u‖p
−
1

C̃2

(
‖u‖q

−
1 + ‖u‖q

+
1 + ‖u‖q

−
2 + ‖u‖q

+
2

) − C̃1|V (x)|r(x).

for all u ∈W , with ‖u‖ > 1.
Now, letting ‖u‖ → ∞ and taking into account that q−1 ≤ q

+
1 ≤ q

−
2 ≤ q

+
2 <

p−1 we have that

lim
‖u‖→∞

EV (u)

F(u)
=∞.

We proceed now to prove the second part of this lemma.
Using the fact that p2(x) < p1(x) for all x ∈ Ω we have the following

continuous embedding

W ↪→W
1,p2(x)
0 (Ω)

and so, if ‖u‖ → 0, then ‖u‖p2(x) → 0.
Let us take for now on ‖u‖ < 1 and ‖u‖p2(x) < 1. Moreover, using rela-

tions (7) and (8) we have the following continuous embedding W
1,p2(x)
0 (Ω) ↪→

Lq
±
1 (Ω) which yields to the fact that there exist two positive constants Cq+1

and Cq−1
such that

‖u‖p2(x) ≥ Cq+1 |u|q+1 and ‖u‖p2(x) ≥ Cq−1 |u|q−1 .

We note that we have the same behavior between the spaces W
1,p2(x)
0 (Ω)

and Lq
±
2 (Ω), so one have

‖u‖p2(x) ≥ Cq+2 |u|q+2 and ‖u‖p2(x) ≥ Cq−2 |u|q−2 .

For every u ∈W with ‖u‖ < 1, we obtain similarly with the previous part
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that:

EV (u)

F(u)
≥

(1− ε)c
p+

1

∫
Ω

|∇u|p2(x)dx

1

q−2

(
|u|q

−
1

q−1
+ |u|q

+
1

q+1
+ |u|q

−
2

q−2
+ |u|q

+
2

q+2

) − C̃1|V (x)|r(x)

≥
Cp+1
‖u‖p

+
2

p2(x)

C̃3

(
‖u‖q

−
1

p2(x) + ‖u‖q
+
1

p2(x) + ‖u‖q
−
2

p2(x) + ‖u‖q
+
2

p2(x)

) − C̃1|V (x)|r(x),

where Cp+1
, C̃3 > 0 are some constants.

Now using relation (7) and passing to the limit as ‖u‖ → 0 (therefore,
‖u‖p2(x) → 0) we obtain that:

lim
‖u‖→0

EV (u)

F(u)
=∞,

which concludes our proof.
�

Proof of Theorem 4.1.

We consider that (un) ⊂W \ {0} is a minimizing sequence for λ1(V ), i.e.:

lim
n→∞

EV (un)

F(un)
= λ1(V ) (17)

Taking account of the first relation in Lemma 4.4 we obtain that (un) is
bounded in W . Using the property of reflexivity of the space W (passing
eventually to a subsequence) we obtain that:

un ⇀ u in W.

By the compact embedding theorem for spaces with variable exponent,
using the relation (7) we have that:

W ↪→ Lθ(x)(Ω), where θ(x) :=
m(x) · r(x)

r(x)− 1
,

W ↪→ Lq1(x)(Ω)

and
W ↪→ Lq2(x)(Ω).
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Hence, we have that
un → u in Lθ(x)(Ω),

un → u in Lq1(x)(Ω)

and
un → u in Lq2(x)(Ω).

Using the Hölder inequality and relation (5) we obtain that

lim
n→∞

F(un) = F(u) (18)

and

lim
n→∞

∫
Ω

V (x)|un|m(x)dx =

∫
Ω

V (x)|u|m(x)dx. (19)

Using relations (18) and (19) and the properties of H(·, ·) and I(·, ·) (for
more details we refer to [12], Lemma 4.3) we have that:

E(u) ≤ lim inf
n→∞

E(un),

hence we obtain

λ1(V ) =
EV (u)

F(u)
.

We only have left to prove that u 6≡ 0.
Arguing by contradiction we assume that u = 0.
Therefore we have that un ⇀ 0 in W and un → 0 in Lh(x)(Ω), where

1 < h(x) < Np1(x)
N−p1(x) on Ω.

Using (18) and (19) we obtain that

lim
n→∞

(F(un)) = 0 (20)

and

lim
n→∞

∫
Ω

V (x)|un|m(x)dx = 0. (21)

Knowing that ϕ ∈ (0, |λ1(V )|) is fixed, by relation (17), for n large enough,
we obtain

|EV (un)− λ1(V )F(un)| < ϕF(un)

or
(|λ1(V )| − ϕ)F(un) < EV (un) < (|λ1(V )|+ ϕ)F(un).

Passing to the limit and using relation (20) we have that:

lim
n→∞

EV (un) = 0.
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Combining the previous relation with relation (5) and by assumptions
(HI1) − (HI4) we obtain that ‖un‖ → 0 in W as n → ∞. Using that and
relation (15) we obtain

lim
n→∞

EV (un)

F(un)
=∞,

which is a contradiction. Thus u 6≡ 0.
In order to complete the proof of our theorem we only have to show that

u found before is a solution of the problem (P ).
Firstly we remind that

EV (u)

F(u)
= λ1(V ) = inf

v∈W\{0}

EV (v)

F(v)
.

We fix v ∈W \ {0} arbitrary and consider the application:

ω 7→ K(ω) :=
EV (u+ ωv)

F(u+ ωv)

which is defined in a neighborhood of the origin. It follows that K ′(0) = 0,
therefore

[E′V (u+ ωv)F(u+ ωv)− EV (u+ ωv)F′(u+ ωv)]
∣∣
ω=0

= 0.

Hence,

F(u)

(∫
Ω

[H(x, |∇u|) + I(x, |∇u|)]∇u∇vdx+

∫
Ω

V (x)|u|m(x)−2uvdx

)
=

= EV (u)

∫
Ω

(
|u|q1(x)−2 + |u|q2(x)−2

)
uvdx.

Using the definition of λ1(V ) and the previous equality, we conclude that
u solves (P ) in weak sense, and so u is a weak solution of problem (P ), which
completes the proof of our theorem.

�

5 Concentration of the spectrum

In this section we will describe some spectral properties in relationship with
the two Rayleigh-type quotients presented in the previous sections.

Theorem 5.1. Let λ ∈ R. Assume that λ < λ0(V ). Then λ is not an
eigenvalue for the problem (P ).
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Proof. Arguing by contradiction we suppose that λ is an eigenvalue for the
problem (P ), which means that there exists uλ0 ∈W \ {0} such that:∫

Ω

[H(x, |∇uλ0
|) + I(x, |∇uλ0

|)] |∇uλ0
||∇ϕ|dx+

∫
Ω

V (x)|uλ0
|m(x)−2uλ0

ϕdx=

= λ

∫
Ω

(
|uλ0 |q1(x)−2 + |uλ0 |q2(x)−2

)
uλ0ϕdx,

for all ϕ ∈W .
Taking ϕ = uλ0

we obtain that:∫
Ω

[H(x, |∇uλ0 |) + I(x, |∇uλ0 |)] |∇uλ0 |2dx+

∫
Ω

V (x)|uλ0 |m(x)dx =

= λ

∫
Ω

(
|uλ0
|q1(x) + |uλ0

|q2(x)
)
dx.

So one have:

λ =

∫
Ω

[H(x, |∇uλ0
|) + I(x, |∇uλ0

|)] |∇uλ0
|2dx+

∫
Ω

V (x)|uλ0
|m(x)dx∫

Ω

(
|uλ0 |q1(x) + |uλ0 |q2(x)

)
dx

≥ inf
ϕ∈W\{0}

∫
Ω

[H(x, |∇ϕ|) + I(x, |∇ϕ|)] |∇ϕ|2dx+

∫
Ω

V (x)|ϕ|m(x)dx∫
Ω

(
|ϕ|q1(x) + |ϕ|q2(x)

)
dx

for all ϕ ∈W , which leads to a contradiction with the choice of λ.
�

Finally we prove the last result studied in this paper.

Theorem 5.2. For every λ ∈ R, with λ > λ1(V ), the problem (P ) has a weak
solution corresponding to its eigenvalue λ.

Proof. Let us fix λ ∈ (λ1(V ),∞) and set

JV,λ : W → R

such that
JV,λ(u) := EV (u)− λF(u).

It is natural to say that JV,λ ∈ C1(W,R) and its directional derivative is:

〈J ′V,λ(u), ϕ〉 = 〈E′V (u), ϕ〉 − λ〈F′(u), ϕ〉,

for all ϕ ∈W .
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Therefore the nontrivial critical points of JV,λ are weak solutions for the
problem (P ), and every λ associated to these solutions represents an eigenvalue
for (P ).

Now, using hypotheses (HI3), (HI4) and taking ε ∈ (0, 1) in relation (13)
we obtain that:

JV,λ(u)≥ (1− ε)c
p+

1

∫
Ω

(
|∇u|p1(x) + |∇u|p2(x)

)
dx−

− Cε|V (x)|r(x)

∫
Ω

(
|u|m

−
+ |u|m

+
)
dx− λ

q−2

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx.

Using relation (16) and the fact that ‖u‖ > 1, there exists a constant
C̃3 > 0 such that:

JV,λ(u) ≥ (1− ε)c
p+

1

‖u‖p
−
1 − C̃3

∫
Ω

(
|u|q1(x) + |u|q2(x)

)
dx

≥ (1− ε)c
p+

1

‖u‖p
−
1 − C̃3

(
|u|q

−
1

q1(x) + |u|q
+
1

q1(x) + |u|q
−
2

q2(x) + |u|q
+
2

q2(x)

)
.

Using the embedding results regarding variable exponent Lebesgue-Sobolev
spaces, dictated by the relations (7) and (8) we have that there exists a con-
stant C̃4 > 0 such that:

JV,λ(u) ≥ (1− ε)c
p+

1

‖u‖p
−
1 − C̃4

(
‖u‖q

−
1 + ‖u‖q

+
1 + ‖u‖q

−
2 + ‖u‖q

+
2

)
.

Taking ‖u‖ → ∞ we obtain that

lim
‖u‖→∞

JV,λ(u) = +∞,

which means that our energy functional is coercive.
Now using the fact that EV (u) is weakly lower semicontinuous (for more

details we refer to [12]), and using arguments from the Chapter 3 of [19] and [9]
F(u) is weakly-strongly continuous, we find that there exists a global minimum
point η ∈W such that:

JV,λ(η) = inf
u∈W

JV,λ(u).

We prove in what follows that η 6= 0. Using the fact that λ1(V ) < λ, we
may find ϕλ ∈W such that EV (ϕλ)− λF(ϕλ) < 0, hence

JV,λ(ϕλ) < 0.

Since η is a global minimum point of JV,λ, we obtain that JV,λ(η) < 0,
which yields that η 6= 0.

Therefore for every λ ∈ (λ1(V ),∞), the problem (P ) has a weak solution
η with its corresponding eigenvalue λ. �
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